National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Induction of neurogenesis and gliogenesis after ischemic CNS injury - the role of Wnt signaling pathway
Koleničová, Denisa ; Anděrová, Miroslava (advisor) ; Nerandžič, Vladimír (referee)
This bachelor thesis is focused on ischemic injury of the central nervous system (CNS), one of the most frequent causes of death and disability in the world, and its possible treatment via the induction of neurogenesis. It consists of three different parts. In the first part, main neurogenic regions of the CNS, the subventricular zone and gyrus dentatus (GD) of the hippocampus, are described at the cellular, as well as molecular level. The second part is mainly dedicated to ischemic injury, to the global and focal brain ischemia. A particular chapter of this part describes changes in neurogenesis and gliogenesis after ischemic injury of the brain, changes in the induction of radial glial cells, proliferation and migration of neural progenitor cells and neuroblasts. In this chapter, we also describe the activation of astrocytes, microglia and NG2 glia (also known as polydendrocytes) after ischemic injury of the CNS. The last, third part of the bachelor thesis, is focused on signaling pathways, which significantly influence neurogenesis: Shh (Sonic hedgehog homolog), Notch and Wnt (Wingles/Integrated) signaling pathways. Special attention is devoted to the Wnt signaling pathway, which is an essential part of molecular mechanisms in nerve cells. Keywords: neurogenesis, gliogenesis, hippocampus, gyrus...
Induction of neurogenesis and gliogenesis after ischemic CNS injury - the role of Wnt signaling pathway
Koleničová, Denisa ; Anděrová, Miroslava (advisor) ; Nerandžič, Vladimír (referee)
This bachelor thesis is focused on ischemic injury of the central nervous system (CNS), one of the most frequent causes of death and disability in the world, and its possible treatment via the induction of neurogenesis. It consists of three different parts. In the first part, main neurogenic regions of the CNS, the subventricular zone and gyrus dentatus (GD) of the hippocampus, are described at the cellular, as well as molecular level. The second part is mainly dedicated to ischemic injury, to the global and focal brain ischemia. A particular chapter of this part describes changes in neurogenesis and gliogenesis after ischemic injury of the brain, changes in the induction of radial glial cells, proliferation and migration of neural progenitor cells and neuroblasts. In this chapter, we also describe the activation of astrocytes, microglia and NG2 glia (also known as polydendrocytes) after ischemic injury of the CNS. The last, third part of the bachelor thesis, is focused on signaling pathways, which significantly influence neurogenesis: Shh (Sonic hedgehog homolog), Notch and Wnt (Wingles/Integrated) signaling pathways. Special attention is devoted to the Wnt signaling pathway, which is an essential part of molecular mechanisms in nerve cells. Keywords: neurogenesis, gliogenesis, hippocampus, gyrus...
Differentiation potential of polydendrocytes after focal cerebral ischemia
Filipová, Marcela ; Anděrová, Miroslava (advisor) ; Jendelová, Pavla (referee)
Ischemic injury leeds to sequence of pathophysiological events, which are accompanied by a release of growth factors and morphogens that significantly affect cell proliferation, migration and also their differentiation. Following ischemia, besides enhanced neurogenesis and gliogenesis in subventricular zone of the lateral ventricles and gyrus dentatus of the hippocampus, neurogenesis/gliogenesis also occurs in non-neurogenic regions, such as cortex or striatum. Recently, the attention was turned to a new glial cell type, termed polydendrocytes or NG2 glia. Under physiological conditions, these cells are able to divide and differentiate into mature oligodendrocytes due to they have often been equated with oligodendrocyte precursor cells. Based on recent reports, polydendrocytes are also able to generate protoplasmic astrocytes (Zhu et al., 2008) and neurons in vitro (Belachew et al., 2003), however their ability to differentiate into astrocytes or neurons under physiological or pathological conditions is still highly debated. Therefore, we have investigated the effect of different growth factors and morphogens, specifically brain-derived neurotrophic factor (BDNF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and a morphogen sonic hedgehog (Shh), on...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.